
LA-UR-21-27630
Approved for public release; distribution is unlimited.

Title: Fast Emulation of Expensive Simulations using Approximate Gaussian
Processes

Author(s): Stetzler, Steven Grant
Grosskopf, Michael John

Intended for: Release for Steven to give as presentation at his university and other
venues as a student

Issued: 2021-08-02

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National
Nuclear Security Administration of U.S. Department of Energy under contract 89233218CNA000001. By approving this article, the publisher
recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution,
or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as
work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom
and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its
technical correctness.

17/28/2021 17/30/21Managed by Triad National Security, LLC, for the U.S. Department of Energy’s NNSA.

Fast Emulation of Expensive
Simulations using
Approximate Gaussian
Processes
Steven Stetzler
Mentor: Mike Grosskopf
7/28/2021

27/28/2021 27/30/21

Introduction

• Nuclear Computational Low-Energy Initiative (NUCLEI) collaboration.
− NUCLEI uses Density Functional Theory (DFT) simulations to predict the structure

and binding energies of nuclei over a wide range of proton (Z) and neutron (N)
numbers.

• The DFT simulations utilize a particular parameterization of a Skyrme energy
density functional called UNEDF1 which depends on 12 free parameters that
must be fit to data (M Kortelainen et al 2014).

• Fitting involves comparing (e.g.) predicted binding energies of nuclei to
experimentally measured values.
− We use only binding energies as observables, but DFT with UNEDF1 will predict

structure (shape) observables as well.

37/28/2021

UNEDF1 Model Fitting

• Model:
𝑦 𝑍, 𝑁 = 𝜂 𝑍, 𝑁, 𝜃 + 𝜖

• Data: 500 parameter values (𝑡) x 79 (𝑍, 𝑁)
Treat output as univariate: 39,500 data
points in 14 dimensions

Observables
(binding energy)

DFT simulator 𝜂(𝑍, 𝑁, 𝑡)
where 𝜃 is the “true”
calibrated value of
simulation parameters 𝑡

Observation noise:
𝜖 ~ 𝑁(0, 2 𝑀𝑒𝑉)

47/28/2021 47/30/21

Uncertainty Quantification and the Need for Emulators

• We wish to quantify the uncertainty of the fit parameters 𝜃 in a Bayesian
framework

𝑝 𝜃 𝑦 ~ 𝑝 𝑦 𝜃 𝑝(𝜃)
• Markov chain Monte Carlo is used to draw samples from 𝑝 𝜃 𝑦 .

− Problem: this would require very many (𝑂(10!)) evaluations of the DFT simulation.
• Solution: Build a fast substitute for the full DFT simulation when evaluating the

likelihood 𝑝 𝑦 𝑥 → Build an Emulator
• A Gaussian process is the emulator of choice (N Schunck et al 2020).

− It is flexible, non-linear, and naturally quantifies uncertainties. However, GPs are slow
for medium-large data ~𝑂(10"))

57/28/2021 57/30/21

Emulation with Gaussian Process

• Model simulator output statistically given a fixed number of simulator runs:
𝑥 = 𝑍,𝑁, 𝑡 !

𝜂 𝑥 ~ 𝑁 𝜇 𝑥 , Σ 𝑥, 𝑥"; 𝑘
𝜇(𝑥) = 0

Σ#,% = 𝑘 𝑥# , 𝑥%; 𝜎, 𝑙 = 𝜎𝑒&
'!&'"

#

(#

• Predictions at new inputs 𝑥∗:
𝜂 𝑥∗ | 𝑥 ~ 𝑁 =𝜇, >Σ

=𝜇 𝑥∗|𝑥 = 𝑘 𝑥∗, 𝑥 Σ** 𝑥, 𝑥 &+ 𝑓(𝑥) − 𝜇(𝑥)
>Σ 𝑥∗|𝑥 = 𝑘 𝑥∗, 𝑥∗ − 𝑘 𝑥∗, 𝑥 Σ** 𝑥, 𝑥 &+𝑘(𝑥, 𝑥∗)

67/28/2021 67/30/21

Exact Gaussian Process is too slow

• Predictions at new inputs 𝑥∗:
𝜂 𝑥∗ | 𝑥 ~𝑁 =𝜇, >Σ

=𝜇 𝑥∗|𝑥 = 𝑘 𝑥∗, 𝑥 Σ** 𝑥, 𝑥 &+ 𝑓(𝑥) − 𝜇(𝑥)
>Σ 𝑥∗|𝑥 = 𝑘 𝑥∗, 𝑥∗ − 𝑘 𝑥∗, 𝑥 Σ** 𝑥, 𝑥 &+𝑘(𝑥, 𝑥∗)

• Σ** 𝑥, 𝑥 &+ requires 𝑂(𝑁,) operations and 𝑂 𝑁- memory!
− 39500# ≈ 61.6×10$% operations and 39500% ≈ 11.6GB of memory

• What makes the data “big” is our choice to treat the multivariate output of the
simulation (79 values of 𝑍, 𝑁) as univariate
− Previous work has incorporated multivariate output with a PCA approach, reducing

input data size to only 500 and using several exact GPs to predict PCA weights (N
Schunck et al 2020).

77/28/2021

Approximate Gaussian Process

• Sparse Variational GP:
− Use 𝑚 “inducing points” to represent the large

dataset as a smaller one. Learn inducing point
locations in a variational manner (M Titsias
2009).

− Speedup! 𝑂(𝑚#) ops. and 𝑂 𝑚% memory!
• Stochastic Variational GP:

− Learn inducing point outputs as well: enables
mini-batch learning through stochastic gradient
descent (J Hensman et al 2015).

• Deep Kernel Learned GP:
− Neural network to construct a non-stationary

kernel and use Structured Kernel Interpolation
for fast matrix inverse (A Wilson et al 2016).

87/28/2021

Results: Accuracy

• Analyzed performance of these models
• Sparse Variational GP outperformed other

options
− Stochastic Variational GP: likely the

optimization problem became too hard when
additionally learning GP outputs/covariance

− Deep Kernel GP: perhaps too hard of an
optimization problem with learning neural
network parameters

• “Best” model
− Sparse GP with 152 inducing points
− Approximately balances trade-off between

accuracy and prediction time

97/28/2021 97/30/21

Results: Calibration

• Used best performing Sparse Gaussian Process for calibration, finding best fit
simulation parameters 𝜃
− 152 inducing points

• Bayesian approach: 𝜃 ~ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 0, 1
• Three approaches to sampling from posterior

− Metropolis Hastings with tuned proposal distribution
− NUTS/HMC with Pyro python package (derivatives enabled through autodiff)
− Importance sampling: draws from prior are weighted by likelihood

• Goal: compare calibration using Sparse GP emulator to calibration with PCA
approach (used NUTS in Stan)

107/28/2021

Results: Calibration

• All attempts to draw samples from
posterior performed poorly

• Importance sampling
− Very few points have weight
− ~20 effective samples from ~3.5 million

samples from prior
• NUTS sampler

− Chains didn’t mix (4 independent chains)
− Pyro implementation/integration was very

slow to sample

117/28/2021

Results: Calibration

• Trace plots show poor mixing of Markov
chains using MH and NUTS sampler

• MH sampler
− Samples had very high autocorrelation in all

dimensions
• NUTS sampler

− High autocorrelation
− Chains didn’t mix
− NUTS worked well with calibration using the

PCA-based emulator

127/28/2021

Issues: Looking at Residuals

• Investigating why calibration has been a
challenge

• One possible reason: emulator is a poor
approximation of the simulator and/or the
data
− Residuals show structure, but difference

between emulator and simulator is much
smaller than difference between
emulator/simulator and data

137/28/2021 137/30/21

Paths Forward

• Better understand source of sampling issues
− Comparing PCA-based emulator and the Sparse GP emulator

§ Is there structure the PCA-based emulator is capturing that the Sparse GP emulator isn’t?
− Further exploration of posterior geometry to understand issues with NUTS

• Implementation of discrepancy model: model the error between
simulator/emulator and observed data

𝑦 𝑍, 𝑁 = 𝜂 𝑍, 𝑁, 𝜃 + 𝛿(𝑍, 𝑁) + 𝜖

147/28/2021 147/30/21

Software Produced

• nuclei
− Python package for training and testing various approximate GPs

• darwin_jupyterhub
− Python package for setting up a JupyterHub to access notebooks on Darwin

• darwin_dask
− Access to Darwin nodes through Dask

157/28/2021

nuclei module

• Train models

• Test models

167/28/2021

JupyterHub on Darwin

177/28/2021

Dask on Darwin

• Start Cluster

• List Clusters

187/28/2021

Dask on Darwin

• Connect and Run

197/28/2021 197/30/21

Conclusions

• Assessing the capability of approximate GP emulators to balance emulator
accuracy with computational speed to facilitate improved UNEDF1 calibration
− Sparse GPs are straightforward to train and accurate
− Calibration is not straightforward with MCMC (using MH or HMC/NUTS)

• Produced reusable software for continuing and building on this work as well as
accessing and using Darwin cluster compute resources

